
1© 2025 The MathWorks, Inc.

Speed Up Macroeconomic Modeling with MATLAB and

Parallel Computing

Eduard Benet Cerdà

01 - Oct - 2025

2

“we have a BVAR model that we would need to speed up”

“we have a DSGE model that we would need to speed up”

“we have a SSM model that we would need to speed up”

“we have a Regime Switching model that we would need to speed up”

…

3

Why is speed important?

▪ Long Computation times

– Many macroeconomic models can take 20, 40, or even 100+ hours to run a single estimation.

▪ Hardware Utilization

– There is often uncertainty about whether current computational resources are being fully leveraged.

▪ Scalability needs

– Access to more powerful computers is now easier

– There is a need to distribute calculations across multiple computers

▪ Repeated Evaluations

– Tasks such as parameter sweeps and Monte Carlo simulations require running many independent

model evaluations, which multiplies the total computation time.

– It also requires a good documentation and coordination of inputs and outputs

4

Approaches to Speeding Up Modeling

Refactor and optimize existing code for efficiency.

Adopt more efficient techniques (e.g. auto-diff)

or develop new algorithms

Harness the power of modern multi-core and

cloud computing to distribute workloads.

5

▪ Examples: parameter sweeps, Monte Carlo simulations

▪ No dependencies or communications between tasks

What is parallel computing?

MATLAB client

Time

for i = 1:5

 y(i) = myFunc(myVar(i));

end

Workers

Time

parfor i = 1:5

 y(i) = myFunc(myVar(i));

end

6

Mechanics of parfor Loops

a = zeros(10, 1)

parfor i = 1:10

 a(i) = i;

end

a
a(i) = i;

a(i) = i;

a(i) = i;

a(i) = i;

Worker

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

Worker

Worker Worker

7

Where does it run?

c = parcluster('clusterName');

c.NumWorkers = x

c.NumThreads = y

p = parpool(c)

parfor i = 1 : N

You have full control on where

and how the code the code

runs, locally, or in the cloud

8

DataQueue

There is more to parallel computing

Is not always a trivial problem..

▪ Some problems can be difficult to adapt into a

parfor loop

▪ parfor is not always the solution, e.g. a Gibbs

sampling process.

▪ Is the potential parallelism obvious to the

researcher?

▪ What is the random seed of my workers?

▪ How costly is the data transfer?

Implementing this requires time and expertise, and

there is no silver bullet, but there are common

patterns.

gpuArray

spmd

parfeval

batch

datastore

tall

parfor

distributed

9

Parallelism in optimization problems

A primary computational bottleneck in macroeconomic modeling is often an optimization procedure.

Luckily, MATLAB streamlines this process by incorporating parallel computing capabilities into most of its

optimization algorithms:

 options = optimoptions('fmincon', UseParallel = true)

This will use parallel computing to calculate the derivative in each direction and step of the optimization

process.

10

Parallelism in optimization problems

A primary computational bottleneck in macroeconomic modeling is often an optimization procedure.

Luckily, MATLAB streamlines this process by incorporating parallel computing capabilities into most of its

optimization algorithms:

 options = optimoptions('fmincon', UseParallel = true)

This will use parallel computing to calculate the derivative in each direction and step of the optimization

process.

An example is Prior Selection for Vector Autoregressions (Giannone, Lenza, Primiceri - 2012)

where the hyperparameters of a BVAR are calculated by maximizing the marginal likelihood

opts = optimoptions('fmincon', UseParallel = true)

hyperparams = fmincon(@nlogmdd, x0, upperBound, LowerBound, opts);

Mdl = conjugatebvarm(nseries, nlags, hyperparams)

Pseudocode:

11

We might not be calling an optimizer directly…

Often, we use a high-level model or tool that wraps the optimization process.

For example, the estimation of a Bayesian State-Space requires tunning a

proposal distribution (an optimization problem):

MdlB = bssm(@dsgeModel, @dsgePrior);

PosteriorMdl = estimate(MdlB,Y,params0);

opts = optimoptions('fminunc', UseParallel = true);

PosteriorMdl = estimate(MdlB, Y, params0, Options = opts);

If the model uses only built-in functions, you can probably take advantage of the above!

12

What if it was not directly MATLAB, e.g. Dynare?

▪ Dynare is a popular tool to enter DSGE models.

▪ A common option is to estimate a model by maximum

likelihood. The code below wraps an “fmincon” problem

Shocks and Frictions in US Business Cycles: A Bayesian

DSGE Approach Smets, Frank and Wouters, Rafael (2007)

We could be tempted to try this

13

This will not be as trivial… until Dynare 7

▪ Dynare is a rather complex tool, it uses patterns like variable persistence,

and it controls the random seeds. A bit more care needs to be put in

distributing parallel work.

▪ A careful worker initialization is needed

MATLAB client

Workers

+ state of

MATLAB

14

How is this done?

Since this is a very popular question, we put together the following function:

>> parpool Processes
>> out = dynareParallel('SmetsWouters.mod', Flags = ["nolog"]);

>> dynare SmetsWouters.mod nolog

Dynare 5, 6

Dynare 7 (tentative)

DynareUtils toolbox

On the original model, with “mode_compute=1”, a 4 core intel I7-1270P provides a

speed-up of ~30% of the time.

https://github.com/ebenetce/DynareUtils/blob/main/DynareUtils.prj
https://github.com/ebenetce/DynareUtils/blob/main/DynareUtils.prj

15

Other approaches: Bayesian estimation with MCMC chains

A similar problem exists when estimating Markov Chains chains in parallel.

This algorithm really benefits from parallel computing as it is often very computationally intense, but

highly parallelizable at the same time.

It is a “parfor” type problem, but is not obvious to the user “where” is this parfor

The benefits can be quite substantial by effectively reducing the problem to: “total_time/mh_nblocks” if

we have enough compute power.

out = dynareParallel('fs2000.mod', AdditionalFiles = 'fs2000_data.m')
Frank Schorfheide (2000): "Loss function-based evaluation of DSGE models"

16

Why is speed important?

▪ Long Computation times

– Many macroeconomic models can take 20, 40, or even 100+ hours to run a single estimation.

▪ Hardware Utilization

– There is often uncertainty about whether current computational resources are being fully leveraged.

▪ Scalability needs

– Access to more powerful computers is now easier

– There is a need to distribute calculations across multiple computers

▪ Repeated Evaluations

– Tasks such as parameter sweeps and Monte Carlo simulations require running many independent

model evaluations, which multiplies the total computation time.

– It also requires a good documentation and coordination of inputs and outputs

17

Repeated evaluations

A second common workflow is the need for running sensitivity

analysis, parameter sweeps, or other processes that require

multiple model evaluations

▪ Error Handling: Is your code robust in individual runs?

▪ Reproducibility: Are you systematically recording inputs and

outputs to allow for reproducibility and audit trails?

▪ Interactivity: Do you need to visualize intermediate results, and

is this process streamlined?

▪ Scalability: Can this code be distributed to multiple machines?

parfor i = 1 : n

 in = myInputs;

 out = runModel(in);

 results{i} = out;

end

18

Robust parallel runs can get compilated…

f(1:n) = parallel.FevalFuture;

for i = 1 : n

 f(i) = parfeval(@runModel, inputs{i});

end

results = cell(n,1);

for i = 1:n

 [idx,out] = fetchNext(f);

 results{idx} = out;

end

Submit asynchronous

independent job

Collect and store the

results as they finish (not

as we submit them)

Getting robust parallel constructs is not always trivial

19

Experiment Manager

• Organizing multiple experiments and the

experiment artifacts and results

• Providing visualizations, filters, and annotations

for comparing results

• Storing the experiment definition and parameter

combinations for each experiment result

20

Experiment Manager

Start with a model parameterized by certain

variables. For example, in Dynare

dynare myModel.mod –Dghh=1 –Dcountry=0

21

Experiment Manager

Define a strategy to run your model.

• All parameter combinations?

• A random sample?

22

Experiment Manager

State the values for your parameter sweep

23

Experiment Manager

Define the function that calls your model
- Inputs are our parameters

- Recorded outputs are our choice

- All plots are recorded

24

Experiment Manager

The Experiment Manager will run

our experiments sequentially or in

parallel

It will also run it in your environment

of choice: the current computer or a

selected cluster

25

Experiment Manager

It will save all combinations of inputs

and outputs stated in the experiment

strategy, and it will let us put any

notes into each experiment for the

future

26

Experiment Manager

Any plot produced by our function,

will also be recorded with its

corresponding set of inputs and

outputs

27

Key Takeaways

▪ Significant Time Savings

– Parallel computing can potentially reduce model estimation times from days to hours

▪ Improved Workflow Efficiency

– Automate and coordinate large-scale simulation tasks, making research more reproducible and

scalable

▪ Practical Implementation

– MATLAB provides user-friendly constructs (parfor, parfeval, and integration with Dynare) to make

parallelization accessible, even for complex macroeconomic models

▪ Reach out

– If you need help speeding up a model, scaling it, or improving your performance in general, our

team is always available to help!

28

Thank You for joining!

Questions?

	Slide 1: Speed Up Macroeconomic Modeling with MATLAB and Parallel Computing
	Slide 2
	Slide 3: Why is speed important?
	Slide 4: Approaches to Speeding Up Modeling
	Slide 5: What is parallel computing?
	Slide 6: Mechanics of parfor Loops
	Slide 7: Where does it run?
	Slide 8: There is more to parallel computing
	Slide 9: Parallelism in optimization problems
	Slide 10: Parallelism in optimization problems
	Slide 11: We might not be calling an optimizer directly…
	Slide 12: What if it was not directly MATLAB, e.g. Dynare?
	Slide 13: This will not be as trivial… until Dynare 7
	Slide 14: How is this done?
	Slide 15: Other approaches: Bayesian estimation with MCMC chains
	Slide 16: Why is speed important?
	Slide 17: Repeated evaluations
	Slide 18: Robust parallel runs can get compilated…
	Slide 19: Experiment Manager
	Slide 20: Experiment Manager
	Slide 21: Experiment Manager
	Slide 22: Experiment Manager
	Slide 23: Experiment Manager
	Slide 24: Experiment Manager
	Slide 25: Experiment Manager
	Slide 26: Experiment Manager
	Slide 27: Key Takeaways
	Slide 28: Thank You for joining! Questions?

