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SVARS WITH SIGN RESTRICTIONS AND LARGE MODELS

» Increasing availability of large datasets — resurgence of large VARs
> Bayesian methods allow estimation of large VARs (Banbura et al., 2010)

» SVARs benefit from broader information sets for

» Shock ldentification
» Number of shocks

» Sign restrictions widely used (Uhlig, 2005; Rubio-Ramirez et al., 2010)
» Conventional approach: Accept-reject methods

The bottleneck
e Tight identification
e Large number of shocks

v

These are two sides of the same coin

Need: Efficient inference methods under tight identification and large models.
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GIBBS SAMPLER WITH ELLIPTICAL SLICE SAMPLING

» Recent work (Chan et al., 2025) tries to solve the problem (more efficient
Accept-reject methods)

» The bottleneck appears later, but still there.

» We propose a Gibbs sampler with embedded elliptical slice sampling.

» Avoids the bottleneck — enables tractable inference even under tight
identification.

» Supports several priors.

» Natural conjugate
» Independent
> Asymmetric

Result: Substantial computational gains.
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APPLICATIONS AND BENCHMARKING

» Application 1: (Kilian and Murphy, 2014) oil market SVAR
» Combination of signs and rankings restrictions to identify

> Flow supply
» Flow demand
» Speculative demand

» They use the efficient Accept-reject methods of (Chan et al., 2025)
» As we add ranking restrictions the method becomes impracticle
» Application 2: (Chan et al., 2025) large SVAR with 35 variables and 8 shocks
» Even efficient Accept-reject methods become impractical as shocks increase
» Our ESS-based Gibbs sampler is robust to the number of shocks
» Related work: Read and Zhu (2025) use slice sampling under conditionally
uniform priors

Our algorithm: General, efficient, scalable.
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THIS PAPER IN A NUTSHELL

> We break apart with the accept-reject tradition and show that embedding an
elliptical slice sampling within a Gibbs sampler approach can deliver dramatic
gains in speed and turn previously infeasible applications into feasible ones

» The objective is to obtain draws from the posterior distribution of the orthogonal
reduced-form parameters conditional on the sign restrictions

» To accomplish such a goal, we iteratively draw from the posterior distributions
conditional on the sign restrictions, making the accept-reject step unnecessary
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THE OBJECTIVE

Consider the SVAR with the general form,
yéAg = x;AJr + z'-=:1’t

Let [Ss(Ap, A;) > 0] equal 1 if the sign restrictions are satisfied and 0 otherwise.

The orthogonal reduced-form parameterization is
y: =xB + e QN(X)
Mapping is f(B, %, Q) = (h(2)7'Q,BA(E)7'Q) = (Ao, A+).
Let [Sr(B,3,Q) > 0] in terms of the orthogonal reduced-form parameterization
The objective is to draw from and transform to parameterization of interest.
p(B) 2) Q | yYiur, SR(Bv Ev Q) > O)
Use following class of prior

p(B,2,Q) =pB, X))k if Q<€ Qy, Where/ kdQ = 1.

n

We call it uniform prior and it is justified by Arias et al. (2025).
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THE PRIOR

Uniform prior

p(B, X, Q) =pB, X))k if Q€ Q,, where/ kdQ = 1.
Qn
For Accept-Reject approach we need
> p(B,X) ~ direct sampling
> p(Q) ~U(Qn)

This includes

e Natural Conjugate
e Independent
e Asymmetric Prior

All combined with Uniform with respect to
Haar Measure over the orthogonal matrices

We focus on Natural Conjugate for p(B, X)
With p(Q) ~ U(Q,,) we get uniform natural conjugate prior.
Because of conjugate, we draw from uniform natural conjugate posterior.
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THE ACCEPT-REJECT ALGORITHM

ALGORITHM

The following algorithm independently draws from the uniform natural conjugate
posterior distribution over parameterization to interest conditional on the sign
restrictions.

1.

Draw (B, X) independently from NIW (7, ®, ¥, ).

2. Draw Q independently from the uniform over O(n).
3.
4
)

Keep (B, X, Q) if the sign restrictions are satisfied: [Sr(B,3,Q) > 0] = 1.

. Return to Step 1 until the required number of draws has been obtained.

. Transform to parameterization of interest.
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THE ACCEPT-REJECT ALGORITHM EVENTUALLY FAILS

A SIMPLE EXAMPLE

» Consider an example similar to the one explored by Granziera et al. (2018):

vi = (W1, e2) = €,Q' ¢y

> We set Xy 11 = X422 = 1 and Xy, 21 = —0.9. Note that the contemporaneous
impact matrix Lg is defined as Ly = X%4-Q. Thus, the impact of the first shock
on y¢1 and y; 2 is:
11 = qu1 and f31 = —0.9¢11 + q12,

respectively, where /;; and g;; are the i-th row and j-th column entry of Ly and
Q, respectively, and q; represents the i-th column of Q.

> If we impose sign restrictions such that both impacts are nonnegative, then
q11 =20 and g2 > 0.9¢11
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THE ACCEPT-REJECT ALGORITHM EVENTUALLY FAILS
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» The size of the set depends:

» Tightness/number of restrictions
» Number of shock
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ELLIPTICAL SLICE SAMPLING (ESS)

ESS is a rejection-free Markov chain Monte Carlo (MCMC) algorithm designed
to sample from posteriors of the form:

p(6) < L(O) N'(0; 1, X2)
where L(8) is a likelihood function and the prior is Gaussian.

The key idea is to treat the prior as defining an ellipse, and sample from the
likelihood-restricted posterior along that ellipse.

ESS is efficient and automatically tunes step sizes — no need for tuning
parameters or gradient evaluations.
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OUR PROPOSED ALGORITHM

» For ESS we need
> B|X,Q=¢s(X,3 Q) B(X) with X normal
> 3| B,Q=y¢=(B,¥, Q) f=(X) with X normal
> Q = fq(X) with X normal

» The algorithm will be written using a uniform natural conjugate prior, but they
could be written using an independent and asymmetric prior

» The objective can be written as
p(Ba 2) Q ‘ yYur, SR(B7 27 Q) > 0) X [SR(Ba 2) Q) > O]N(\il,Z ®Q) (B)IW(E,@)(E)

> We will use Gibbs Sampler.
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OUR PROPOSED ALGORITHM

ALGORITHM
The following algorithm independently draws from the natural conjugate posterior
distribution over parameterization to interest conditional on the sign restrictions.

1. Draw Q' from
p(Q B2 L yir, Sr(-) > 0) o [Sr(-) > 0]
2. Draw X from
p(Z | B Q" yir, Sr(-) > 0) « [Sk(:) > O]N(\iz,z;®Q)(Bi_1)IW(f,,(i>)(2)
3. Draw B' from
p(B| X', Q" y1r,Sr() > 0) < [Sr(-) > 0|N g 5i gr) (B)
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DRAWING FROM p(Q | B, £,y 1.1, S(B, 5, Q) > 0)

Use a transformation from a matrix normal to via the Q) R-decomposition.

Let X ~ Npuxn(0,1,,1,).

Define the mapping Q = (X)), where v extracts the orthogonal matrix from the
Q) R-decomposition of X.

Then Q is distributed uniformly according to the Haar measure.

Sampling procedure:

1. Draw X from:
[Sr(B,S,v(X)) > 0]N1,.1,)X).

2. Transform via Q = (X) to obtain a draw from the desired conditional distribution.

Since X is Gaussian, we use Elliptical Slice Sampling (ESS) to draw efficiently
from the truncated Gaussian.
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DRAWING FROM p(z | B7 Q7 yYir, SR(B7 27 Q) > O)

Use a transformation from a matrix normal to an inverse Wishart via a quadratic
mapping.

Let R ~ Npxp(0, 871, 1;).

Define the mapping S = ¢(R) = (RR’/)~L.

Then S is distributed as inverse Wishart: S ~ ZW (7, ®).

Sampling procedure:
1. Draw R from:

[Sr(B,<(R),Q) > 0N (g (r)ea)(B)Ng é-11,)(R).

2. Transform via S = ¢(R) to obtain a draw from the desired conditional distribution.

Because R is Gaussian, we use Elliptical Slice Sampling (ESS) to efficiently draw
from the truncated Gaussian.
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SMALL SVAR oF THE WORLD OIL MARKET

» In the first application, we replicate Kilian and Murphy (2014). This paper adds
oil inventories to the model Kilian and Murphy (2012) in order to identify
speculative demand shocks. The tight restrictions used in this paper render the
identified set small and the typical algorithm becomes infeasible

» To get around this infeasibility, Kilian and Murphy (2014) consider an approach
similar to the one in Chan et al. (2025) by exploiting permutations and sign
alternation. As we will show below, our algorithm can handle this application in
about half the time it takes when using Chan et al.’s (2025) accept-reject
algorithm
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SMALL SVAR oF THE WORLD OIL MARKET

IDENTIFYING RESTRICTIONS

Sign Restrictions on Impact Impulse Responses

Variable/Shock Flow supply Flow demand Speculative demand
Oil production -1 +1 +1
Real activity -1 +1 -1
Real price of oil +1 +1 +1
Inventories +1

Elasticity Bounds
Flow supply shock Flow demand shock Speculative demand shock

Price Elasticity of Oil Supply 0.025 0.025

Sign Restrictions on Impulse Responses at Horizons 0 through 12
Flow supply shock Flow demand shock Speculative demand shock

Real activity -1
Real price of oil +1
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SMALL SVAR oF THE WORLD OIL MARKET

IMPULSE RESPONSES TO FLOW SUPPLY SHOCK
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CoMPUTATION TIME: GIBBS VS ACCEPT-REJECT

Specification Benchmark Model Benchmark Model +
Additional Restriction

Gibbs Sampler 0.03
Accept-Reject 0.33

TABLE: Time (Hours) Per 1,000 Effective Draws
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SMALL SVAR oF THE WORLD OIL MARKET

IDENTIFYING RESTRICTIONS

Sign Restrictions on Impact Impulse Responses

Variable/Shock Flow supply Flow demand Speculative demand
Oil production -1 +1 +1
Real activity -1 +1 -1
Real price of oil +1 +1 +1
Inventories +1

Elasticity Bounds
Flow supply shock Flow demand shock Speculative demand shock

Price Elasticity of Oil Supply ~ (—0.09, —0.07) 0.025 0.025

Sign Restrictions on Impulse Responses at Horizons 0 through 12
Flow supply shock Flow demand shock Speculative demand shock

Real activity -1
Real price of oil +1
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Specification Benchmark Model Benchmark Model +
Additional Restriction

Gibbs Sampler 0.03 0.10
Accept-Reject 0.33 7.92

TABLE: Time (Hours) Per 1,000 Effective Draws
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A LARGE SVAR or THE U.S. ECONOMY

We re-visit the structural analysis in Chan et al. (2025) who use Crump et al.’s
(2025) large SVAR model of the U.S. economy to identify 8 structural shocks

The model includes 35 variables typically monitored at the Federal Reserve
System. The SVAR is specified at quarterly frequency (1973:Q2-2019:Q4)

We assume a Minnesota prior for the reduced-form parameters and we set the
hyper-parameters following Giannone et al. (2015). We follow the conventional
approach and impose a Haar distribution over the set of orthogonal matrices

For identification purposes, Chan et al. (2025) use sign restrictions on the
contemporaneous impulse responses as well as by ranking restrictions. In total,

there 105 sign restrictions are imposed
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A LARGE SVAR or THE U.S. EcoNnOMY

IMPULSE RESPONSES TO A DEMAND SHOCK
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AcceEPT-REJECT vS GIBBS
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BEYoOND GIBBS

» Gibbs sampling can be costly in large models due to autocorrelation of draws.
» Temptation: use conditionally uniform (CU) prior:

» Like accept—reject, typically yields independent draws.

» Lower computational burden.
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SETUP AND NOTATION
» Define the set:
Qn.(B,%) ={Q € Q,:Sr(B,X,Q) > 0}.
» Choose a normalizing constant x(B, ¥) such that:
/ k(B,X)dQ = 1.
Qn(B,X)
» The Conditional Uniform Normal-Inverse-Wishart (CU) prior is defined as:

K(Bv 2) NIW(U,‘I’,\I’,Q) (B7 2)7 Q € Qn(Bv 2)7

0, otherwise.

(:L”V|VV(V¢§7qy¢])(I37237(2) = {

» Key Feature: x(B,X) depends on (B, X), so reduced-form parameters with:

> Smaller identified sets (i.e., larger x(B, X))
» Receive more prior mass.
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CONDITIONAL PRIOR ON Q

» Under the CU prior, the conditional prior on Q is uniform over the restricted set:

k(B,%), Qe O(n)(B,%),
0, otherwise.

» Note that (B, X) depends on the imposed restrictions.

> Implication:

» Changing the restrictions alters x(B, X).
» This in turn changes the implied prior on derived quantities like Ly (impact IRFs).
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POSTERIOR UNDER SIGN RESTRICTIONS

» Given data y1.7 and sign restrictions Sp(B, 3, Q) > 0, the posterior is:

Sr(B,X,Q) > 0] CUNIW(7, &, ¥, Q)

p(B, 2, Q[y1r,Sr(B. 2, Q) > 0) = =5 g B 07> 0] y1)

» Sampling Strategy:
» Draws can be obtained using a simple accept—reject scheme on Q.

» Some people are using EES on this step (see )readzhu2025

34 /40



MODIFIED ACCEPT-REJECT ALGORITHM

ALGORITHM
The following algorithm does independently draws posterior under sign restrictions (CU

prior).

1.
2. Draw Q independently from the uniform over O(n) until [Sr(B,3,Q) > 0] = 1.
3.
4

. Transform to parameterization of interest.

Draw (B, X) independently from NIW (7, ®, ¥, ).

Return to Step 1 until the required number of draws has been obtained.
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COMPARISON OF SIGN RESTRICTIONS

Identification A

Identification B

S1

S2

S3

S1

S2

S3

Varl +1
Var2 +1
Var3 +1

+1
-1

+1
+1
-1

Var 1
Var 2
Var 3

+1
+1
+1

+1
-1
-1

+1
+1
-1

> Any IRFs satisfying Identification B also satisfy Identification A.

» Identification B is stricter (more restrictive) than A.
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How THE IMPLIED PRIOR SHIFTS UNDER CU

Fix hyperparameters:
> v =100
> d=1,

Consider ten matrices {Z/}19,:
» Each has equal prior density under IW, 3,
» Each has the same determinant

Let {L{}19, be the corresponding impact IRFs that satisfy Identification B.
Since the Jacobian from (X, Q) to Ly depends only on det(X):
» The unrestricted prior treats all Lé equally.

Under the CU prior with identification scheme j € {A, B}:
™(Ly) _ H(E)

m(Ly) W)

Differences in the prior over Lq arise solely from the sign restrictions via x/(X).
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EMPIRICAL ILLUSTRATION: PRIOR RATIOS

Draw ¢ 1 2 3 4 5 6 7 8 9 10

A (Ly)/m*(Lg) 1.00 129 089 062 145 152 046 007 124 041
oB(L§)/7P(Ly) 1.00 160 1.88 025 058 0.83 026 0.03 1.00 031

TABLE: Different schemes = different implied priors over IRFs under CU.

Example contrasts:
> Under A: L) favored 1.45x over L.

> Under B: L{ favored ~ 4x over Lg; L} favored 2x over L.
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SUMMARY

» CU prior offers computational simplicity, but at a conceptual cost.

> It reweights parameter regions based on identified set size.
» Different sign schemes = different implied priors.

» Prefer priors with Q L (B, X) and uniform over O(n).
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CONCLUSION

> We develop a new algorithm for inference based on sign-identified SVARs
o The key insight is to break apart from the accept-reject tradition associated with
sig-identified SVAR

o We show that embedding an elliptical slice sampling within a Gibbs sampler
approach can deliver dramatic gains in speed and turn previously infeasible
applications into feasible ones

» We provide a tractable example to illustrate the power of the elliptical slice
sampling applied to sign-identified SVARs

> We demonstrate the usefulness of our algorithm by applying it to a well-known
small-SVAR model of the oil market featuring a tight identified set as well as to
large SVAR model with more than 100 sign restrictions
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